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ABSTRACT

The applicability of a four-dimensional variational data assimilation (4DVAR) technique to retrieval of mi-
croscale turbulent structures in a convective boundary layer is assessed. Two new features are implemented into
the existing 4DVAR model: a height-dependent eddy viscosity and a surface flux model. The identical twin
experiments approach is adopted to utilize the model itself to generate 13 instantaneous three-dimensional radial
velocity datasets uniformly spanning 5 min. An ideal experiment, using these datasets as the observations, is
first tested. After 400 iterations, the resulting correlation coefficients between retrieved and exact data are 0.99
for velocity and 0.97 for temperature fields. To emulate the lidar scanning feature, the 13 three-dimensional
datasets are used to construct two volume scan datasets with each horizontal data slice taken from different
instantaneous datasets. Using these data as the input, the correlation coefficients for horizontal, spanwise, and
vertical velocity fluctuations and temperature can still reach 0.97, 0.97, 0.94, and 0.72 after 400 iterations.
Addition of a surface flux model improves retrieval quality. Allowing height-dependent eddy viscosity and
diffusivity does not improve retrieval quality, whereas doubling the value of eddy diffusivity improves retrieval
quality. Implementation of temporal and spatial smoothness penalty functions significantly improves retrieval
quality in the presence of various sources of error.

1. Introduction

Advances in remote sensing techniques, such as radar
and lidar, allow measurement of high spatial resolution
data of the atmospheric boundary layer (ABL) for the
study of atmospheric flow structures. For instance,
Weckwerth et al. (1997) used the high-resolution Dopp-
ler lidar at the Environmental Technology Laboratory
of the National Oceanic and Atmospheric Administra-
tion, which has about 30-m range resolution and less
than 5 cm s21 velocity resolution (Grund et al. 1997),
to reveal organized streak structures over flat terrain.
Cooper et al. (1997) and Hagelberg et al. (1998) used
lidar to identify multiscale Rayleigh–Bernard-like cells
in the surface layer of a marine ABL. Nevertheless,
three-dimensional (3D) wind vector and temperature
data, required for understanding atmospheric flows, are
not observed by Doppler radar or lidar.

In recent years, new techniques have been developed
to merge limited observations with dynamic models to
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derive more complete atmospheric data. Among them
is four-dimensional variational data assimilation
(4DVAR) with the aid of an adjoint model, which has
been shown to be promising in meteorological and
oceanographic applications (e.g., Talagrand and Cour-
tier 1987; Thacker and Long 1988). A full operational
application of the variational approach has not been im-
plemented mainly due to the substantial CPU time re-
quired for the optimal solution. However, since the in-
troduction of the method of adjoint equations to perform
data assimilation, intensive research has been conducted
using models of increasing complexity and dimensions
(see, e.g., Talagrand and Courtier 1987; Navon et al.
1992; Rabier and Courtier 1992; Zou et al. 1993; Sun
and Crook 1998).

Sun et al. (1991) and Sun and Crook (1994, 1997,
1998) used 4DVAR with a nonhydrostatic numerical
model and radar observations to retrieve atmospheric
convective-scale flow structures. For instance, they re-
trieved the wind and thermodynamic fields of a gust
front (Sun and Crook 1994), resolving finescale flow
structures along the leading edge. Later, Sun and Crook
(1997, 1998) added microphysical parameterizations to
the technique and successfully retrieved detailed wind,
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thermodynamics, and microphysics from a simulated
convective storm.

More recently, the 4DVAR developed by Sun and
Crook (1997, 1998) was implemented in the Washington
D.C.–Baltimore Weather Forecast Office to operation-
ally provide low-level wind and temperature informa-
tion for the National Center for Atmospheric Research
(NCAR) Auto-Nowcaster system (Roberts et al. 1998).
The applicability of their technique to retrieve micro-
scale turbulent coherent structures in the ABL, however,
has to be investigated. If the retrieval of microscale
structures is effective and accurate, lidar data can be
integrated to provide more detailed atmospheric infor-
mation for fundamental research and operational appli-
cation. This could increase the lead time for the forecast
of initiation of moist convection, which may evolve into
thunderstorms. It could also lead to new algorithms us-
ing the derived data for the detection of turbulent co-
herent structures, microbursts, and wind shear.

The objectives of this paper are twofold. One is to
add two new features, a surface (momentum and tem-
perature) flux model and a height-dependent eddy vis-
cosity model, into the 4DVAR developed by Sun et al.
(1991) for the retrieval of turbulent structures in the
ABL. In large-eddy simulation (LES) of high Reynolds
number ABL flows, flow near rough terrain is not well
resolved and a surface flux model is needed to ensure
proper realization of flow structures in these regions
(Sullivan et al. 1994). Subgrid-scale (SGS) eddy vis-
cosity is often parameterized to correlate with SGS tur-
bulence kinetic energy (TKE), which varies in time and
space. Use of a height-dependent eddy viscosity allows
assessment of eddy viscosity effect on retrieval quality.

The other objective is to test the sensitivity of retrieval
quality to the initial guess, the observational frequency,
the observational error, the surface flux model, the eddy
viscosity and diffusivity, and the temporal and spatial
smoothness penalty functions. This information is cru-
cial to the application of the 4DVAR to real data in the
future. To achieve this second objective, a sequence of
numerical ‘‘identical twin’’ experiments (Long and
Thacker 1989) are carried out. The 4DVAR technique
involves forward integration of numerical prediction
model equations in time and backward integration of
adjoint equations. In identical twin experiments, obser-
vational data generated by the 4DVAR prediction model
are assimilated back into the 4DVAR. Without degrad-
ing the synthetic observational data, these experiments
tend to generate overoptimistic results. Thus we shall
degrade the observational data by reducing data avail-
ability, adding observational errors, and altering bound-
ary conditions.

The paper is organized as follows. The numerical
method is discussed in section 2. In section 3, the pro-
cedure for generating observational data is described.
Results are presented in section 4, and conclusions in
section 5.

2. Numerical method

a. Prediction model

The current 4DVAR system is an extension of the
single-Doppler parameter retrieval (SDPR) system de-
veloped by Sun et al. (1991). The model uses methods
of control theory to find the 3D velocity vector and
temperature fields that best fit the observations. The
model first solves Navier–Stokes equations with Bous-
sinesq approximation subject to an externally applied
vertical mean temperature gradient:

]Ui 5 0, (1)
]xi

2](U U )]U 1 ]P gu ] Uj ii i1 5 2 1 d 1 n , (2)i3]t ]x r ]x Q ]x ]xj o i o j j

2](U u)]u dQ ] (u 1 Q)j
1 1 U 5 k , (3)3]t ]x dx ]x ]xj 3 j j

where U1, U2, and U3 (U, V, and W) are velocity com-
ponents in the respective x1, x2, and x3 (x, y, and z)
directions. Spatial variables x1, x2, and x3 correspond
to the east, north, and vertical directions, respectively.
Here u, Q, and Q0 are the fluctuating, background (func-
tion of z only), and reference virtual potential temper-
ature, respectively. Lowercase variables denote fluctu-
ating parts of the variables. Eddy viscosity n and thermal
diffusivity k are assumed constant in the SDPR. A sec-
ond-order finite volume method is applied for spatial
differencing and a second-order Adam–Bashforth meth-
od is used for time-advancement of dependent variables,
which are arranged on a staggered, orthogonal grid.
Mass conservation is enforced by solving a pressure-
Poisson equation derived from the continuity equation
(1) and momentum equations (2).

To retrieve flow structures in the convective boundary
layer (CBL), two new features are added to the SDPR.
First, eddy viscosity n and thermal diffusivity k are
made functions of height to consider the increasing tur-
bulence intensity as the surface is approached. The ver-
tical profiles of n and k are generated by the NCAR-
LES code (Moeng 1984; Sullivan et al. 1994), which
solves a prognostic SGS TKE equation for the SGS
turbulence energy e and computes

2l
1/2n 5 0.1le and k 5 1 1 n, (4)1 2D

where l is a mixing length and D an average grid spac-
ing.

Second, a surface momentum and temperature flux
model is implemented to enforce correspondence to
Monin–Obukhov similarity theory at the first vertical
grid level immediately above the surface. The original
model applied a gradient-free bottom boundary condi-
tion for horizontal momentum and temperature equa-
tions, implying zero surface momentum and temperature
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fluxes. Here, surface momentum and temperature fluxes
are modeled by (Ferziger 1993)

Uit 5 ^t & , (5)i3 i3 ^U &i

(u 1 Q 2 Q )1 st 5 ^t & , (6)u3 u3 ^u 1 Q 2 Q &1 s

where the subscript i is either 1 or 2 and the angle
bracket denotes spatial averaging over an x 2 y plane.
Here Q1 is the background virtual potential temperature
at the first vertical grid point and Qs denotes the surface
temperature. Ui and u are data at the first vertical grid
level. To evaluate the mean surface momentum ^t i3& and

temperature ^tu3& fluxes, the surface-layer friction ve-
locity u* and temperature scale u* (defined as 2 /u u3

u*) are estimated using the similarity equations,

2 2Ï^U & 1 ^U & 1 z z1 2
5 ln 1 C , (7)M1 2 1 2[ ]u* k z Lo

^Q 2 Q & 0.74 z z1 s 5 ln 1 C , (8)H1 2 1 2[ ]u* k z Lo

where k is the von Kármán constant, L the Monin–
Obukhov length scale, zo the surface roughness height,
and z half the vertical grid spacing. Here CM and CH

are given by

4.7z/L if z/L . 0
2C 5 22 ln[(1 1 j)/2] 2 ln[(1 1 j )/2] 1 2 arctan(j) 2 z if z/L , 0 (9)M 

0 if z/L 5 0

4.7z/L if z/L . 0
C 5 22 ln[(1 1 h)/2] if z/L , 0 (10)H 
0 if z/L 5 0,

where j 5 [1 2 (15z/L)]1/4, h 5 [1 2 (9z/L)]1/2, and z
5 p/2 5 1.57079633. Mean surface momentum and
temperature fluxes are then calculated using

^U &i2^t & 5 u* , (11)i3
2 2Ï^U & 1 ^U &1 2

^t & 5 2u*u*. (12)u3

Lateral boundary conditions for U, V, W, and u fields
are obtained by linearly interpolating the observational
data. The gradient-free boundary condition is imposed
at the top of the domain for U, V, and u fields. For field
W the Dirichlet boundary condition W 5 0 is used.
Additional terms and features, such as Coriolis force
and a Galilean transformation of the coordinates with a
constant speed, are added to the model equations. The
Galilean transformation mimics a moving grid and is
applied to reduce the maximum velocity over the do-
main, thereby increasing the time step allowed and re-
ducing computer memory usage. The 4DVAR method
requires huge amounts of computer memory, depending
on the grid size, the assimilation period, and the time
step. Variable management in code is also optimized,
reducing memory usage about twofold as compared with
the SDPR.

b. Optimization method

The optimization procedure is to minimize the cost
function subject to the constraints (1), (2), and (3). The
cost function J is defined as

2
]Uiobs 2J 5 [a(U 2 U ) ] 1 b , (13)OO Orad rad 1 2[ ]]xt x,y,z x,y,z i t50

where Urad and represent radial velocities obtainedobsU rad

from the prediction model and field observation, re-
spectively. The expression for the first term on the right-
hand side implies that observational error is uncorre-
lated. Here a is the validity coefficient indicating data
quality and is taken as unity in the study. The second
term, a penalty function, represents the nondivergent
constraint for the initial velocity field. With the stipu-
lation that this penalty term cannot dominate the cost
function, the value for coefficient b should be selected
as large as possible to obtain a divergence-free initial
velocity vector field, and is set to 100. As a consequence,
the second term in Eq. (13) is about 1% of the first term
after 100 iterations and about 15% after 400 iterations.
This cost function does not include a background term
measuring the difference from the previous forecast be-
cause the aim of the study is to assess the application
of the 4DVAR to retrieval of microscale turbulent eddies,
not forecast. The relationship between the radial veloc-
ity and the three velocity components is expressed as

U (x 2 x ) 1 U (x 2 x ) 1 U (x 2 x )1 1 1o 2 2 2o 3 3 3oU 5 ,rad
2 2 2Ï(x 2 x ) 1 (x 2 x ) 1 (x 2 x )1 1o 2 2o 3 3o

(14)

where (x1o, x2o, x3o) are the radar (or lidar) coordinates.
The optimization procedure described in detail by Sun
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et al. (1991) is briefly described here. The adjoint meth-
od involves converting the constrained minimization
problem into an unconstrained problem through the use
of Lagrange functions. That is, the constraints [equa-
tions (2), (3), and the pressure-Poisson equation derived
from Eqs. (1) and (2)] multiplied by Lagrange multi-
pliers (li or adjoint variables) are appended to the cost
function [equation (13)]. This leads to the Lagrange
function,

L 5 J 1 [l (x momentum equation)O O u
t x,y,z

1 l (y momentum equation)y

1 l (z momentum equation)w

1 l (u equation)u

1 l (pressure-Poisson equation)].p

(15)

The unconstrained minimization of L with respect to
U, V, W, u, P, lu, ly , lw, lu, and lp is equivalent to
the constrained minimization of J with respect to U, V,
W, u, and P. The first variation of L with respect to lu,
ly , lw, lu, and lp restores the governing equations. The
first variation of L with respect to U, V, W, u, and P
gives adjoint equations for l. Backward integration of
the adjoint equations yields lu, ly , lw, and lu at the
initial state, corresponding to the initial U, V, W, and u
gradients,

]L
5 2l (x, y, z, 0),u]U(x, y, z, 0)

]L
5 2l (x, y, z, 0),y]V(x, y, z, 0)

]L
5 2l (x, y, z, 0),w]W(x, y, z, 0)

]L
5 2l (x, y, z, 0). (16)u]u(x, y, z, 0)

With these gradients, the limited-memory quasi-Newton
algorithm BFGS (Liu and Nocedal 1989) is applied to
find the optimal initial guess for the prediction model,
whose solution best fits the observations in a least
squares sense.

Recently other minimization methods have been pro-
posed to accelerate convergence, such as the adjoint
Newton algorithm (Wang et al. 1997) and the quasi-
inverse method (Kalnay et al. 2000). The quasi-inverse
method is a generalization and simplification of the ad-
joint Newton algorithm. Both methods can be consid-
ered as variants of the Newton algorithm, which con-
verges in a single iteration for a quadratic function.
Unlike the Newton algorithm, both methods integrate
the tangent linear model backward in time instead of
computing the Hessian or the gradient of the cost func-

tion. It was reported that these methods are many times
faster than the quasi-Newton BFGS method for certain
applications. One of the major restrictions of these meth-
ods is the requirement that the observation operator (the
operator that transforms the model variables to the ob-
servational variables) is invertible, which is impossible
in the case of radar and lidar data assimilation due to
the fact that the model variables are much more than
the observed variables. In addition, the backward in-
tegration of the tangent linear model has to reverse the
sign of the diffusion terms to avoid numerical instability.
Its effect on the retrieval of microscale turbulent struc-
tures requires further study. Another concern is about
finding a ‘‘complete suitable final condition’’ for the
backward integration of the tangent linear model. One
has to recognize that radar and lidar data are measured
in a continuous time sequence. It is not possible to have
a complete volume data at a single time. Despite of the
limitations of the methods, it is possible to use them as
a preconditioner for the current model to provide a good
first guess after some approximations as discussed in
Kalnay et al. (2000).

Two averaging approaches are used in the calculation
of mean momentum and temperature fluxes [the angle
brackets in Eqs. (7)–(12)]. One approach applies spatial
x 2 y plane averaging at every time step of forward
integration using data from the previous step. The other
approach applies spatial and temporal averaging at the
beginning of each new iteration using data from the
previous iteration. Recall that every iteration involves
forward integration of the prediction equations and
backward integration of the adjoint equations. Varia-
tions of the mean fluxes are assumed negligible as com-
pared with those of instantaneous variables. Thus the
adjoints of instantaneous surface momentum and tem-
perature fluxes [Eqs. (5) and (6)] can be derived in a
straightforward manner.

3. Observational data

Observational data are generated using the prediction
model previously described. Periodic boundary condi-
tions are imposed in the x and y directions as in most
LES of the ABL, while in retrieval experiments the more
realistic Dirichlet lateral boundary conditions are im-
posed. The initial conditions for dependent variables are
obtained using the NCAR-LES code (Moeng 1984; Sul-
livan et al. 1994). A grid size of 48 3 48 3 48 is used
on a computational domain of 5 km 3 5 km 3 2 km
with 104-m horizontal and 42-m vertical spatial reso-
lution. The spatial resolution is chosen as typical of lidar
range. For instance, the range resolution for the NOAA
mini-MOPA CO2 Doppler lidar is 100 m and its max-
imum range is 5 2 15 km. The NOAA–ETL high-res-
olution Doppler lidar can measure radial air motion with
30-m resolution. The simulated CBL flow is driven by
a geostrophic wind of 10 m s21 and a temperature flux
of 0.24 K m s21. A capping inversion layer is imposed
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FIG. 1. (a) Mean velocity and temperature profiles, (b) vertical distributions of normalized velocity and temperature variances. Field data
of vertical velocity variance denoted by various symbols from Lenschow et al. (1980) are displayed for comparison.

at about z 5 980 m. The Coriolis parameter f is 1024

1 s21 and the roughness height z0 is 0.16 m. The stability
parameter 2zi/L, where zi is the averaged CBL height
and L is the Monin–Obukhov length, is about 15.

The simulation was first carried out for about 1.56 h
(real time elapsed for turbulence to evolve) using the
NCAR-LES code, optimized for simulation of ABL
flows. Using the large-eddy turnover time zi/w* ø 490
s as a reference, where w* is the free-convection scaling
velocity, there are about 11 convective eddies sequen-
tially reaching the top of the CBL from the surface
during the 1.56-h period. The generated velocity and
temperature fields together with the x 2 y plane-aver-
aged eddy viscosity and diffusivity were input to the
prediction model described in section 2. To reduce com-
puter memory usage, the vertical grid number was re-
duced from 48 to 45, corresponding to a physical ver-
tical extent of 1 875 m. The simulation was continued
with a time step of 5 s for 50 s and 3D data were
subsequently recorded every 25 s for 300 s, generating
13 3D instantaneous datasets. The Coriolis force had
negligible effect on data generated over 5 min. The
calculated velocity fields were then converted to ‘‘ob-
served’’ radial velocity fields [ in Eq. (13)] usingobsU rad

Eq. (14). For this paper, we assume there is only one
lidar at (x, y, z) 5 (0,0,20.8) m.

The time required for a lidar volume (3D) scan de-
pends on several factors, such as the scanning rate, the
number of pulses averaged, and the pulse repetition fre-
quency (PRF). At PRF 5 200 Hz with a 100 pulse
average, a data beam is generated every 0.5 s. At a
scanning rate of 108 s21, an angular resolution of 58 can
be obtained. A volume scan is composed of a series of

plane-position indicator (PPI) scans at several elevation
angles. Since each PPI scan sweeping a 908 angle takes
about 18 s at this rate, it is impossible to measure a
volume dataset every 25 s (the time interval of the re-
corded datasets). For the following experiments, we first
used the 13 radial velocity datasets as input, representing
the best retrieval this 4DVAR model can achieve. These
datasets were then used to construct two volume scan
datasets measured in 5 min, emulating the lidar scanning
feature.

Since the 3D velocity and temperature fields calcu-
lated at each time step during forward integration of the
prediction model must be stored in computer memory
for later use in backward integration of the adjoint equa-
tions, a large amount of memory is required. For in-
stance, with a 48 3 48 3 45 grid, 5-s time step, and
300-s period, each dependent variable requires about
6.3 M Words of memory and each run about 90 M
Words. The original SDPR requires more than 160 M
Words for management of validity coefficients a and b
in Eq. (13) and other penalty functions. Memory usage
can be further reduced by temporarily storing numerical
data on a hard disk, but that reduces model efficiency
with excessive read–write operations during the search
for the optimal solution.

The mean velocity and temperature profiles of the
‘‘simulated’’ observational data and their variances are
displayed in Figs. 1a and 1b, respectively. The top of
the CBL is capped by an inversion layer, characterized
by the large gradient of mean virtual potential temper-
ature shown in Fig. 1a. Typical profiles of vertical ve-
locity variance in the CBL as measured by Lenschow
et al. (1980) for various stability regions are shown for
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TABLE 1. Descriptions of the retrieval experiments: ‘‘obs,’’ instan-
taneous 3D radial velocity field; ‘‘smooth.,’’ smoothness penaly con-
straint; ‘‘uerror,’’ percentage of random error added to initial guess;
‘‘uscale,’’ the scaling factor for initial guess; ‘‘e,’’ observational error.

Case Descriptions

1 13 obs, ^Ui&
2 13 obs, 0.8 ^Ui&
3 13 obs, (1 1 0.2e)^Ui&
4 13 obs, bilinear interpolation, uerror 5 0.2, uscale 5 0.5
5 13 obs, bilinear interpolation, uerror 5 0.2, uscale 5 0.3
6 3 obs, bilinear interpolation, uerror 5 0.2, uscale 5 0.3
7 3 scans
8 2 scans
9 2 scans, 1/2 vertical resolution

10 2 scans, random e, |e|max 5 0.5, erms 5 0.29 m s21

11 2 scans, vertically correlated e
12 2 scans, horizontally correlated e
13 2 scans, horizontally and vertically correlated e
14 2 scans, ISUFT 5 2
15 2 scans, gradient free
16 2 scans, ISUFT 5 0, t ± 0
17 2 scans, Dirichlet boundary condition
18 2 scans, 2n and 2k
19 2 scans, 05.n and 0.5k
20 2 scans, 4n and 4k
21 2 scans, 2n
22 2 scans, 0.5n
23 2 scans, 2k
24 2 scans, 0.5k
25 2 scans, nm and km

26 2 scans, 2nm and 2km

27 2 scans, spatial smooth., random e, erms 5 0.29 m
s21, k

28 2 scans, spatial smooth., random e, 2k
29 2 scans, both smooth., random e, 2k
30 2 scans, both smooth., vertically correlated e, 2k
31 2 scans, both smooth., horizontally correlated e, 2k
32 2 scans, both smooth., vertically and horizontally

correlated e, 2k

comparison. Although the dependence of these profiles
on stability parameter 2zi/L is not clear, our data agree
well with field data.

4. Results

The results from a series of identical twin experiments
are presented with discussion on the sensitivity of re-
trieval quality to the initial guess, the observational fre-
quency, the observational error, the surface flux model,
the eddy viscosity and diffusivity, and the temporal and
spatial smoothness penalty functions. The descriptions
of these experiments are summarized in Table 1. It is
noted that the retrieved data at the middle of the assim-
ilation time window are more accurate than at the be-
ginning or the end of the window. To illustrate this
phenomenon, let us consider a simple linear curve fitting
by the method of least squares through N experimental
data points (xi, yi), where the subscript i refers to the
ith dataset. The coefficients A and B in the linear re-
lationship,

y 5 Ax 1 B, (17)

are derived by imposing the first-order necessary con-
ditions in minimization of the misfit between the data
and the curve in a least squares sense. This curve passes
through the means of all data points,

y 5 Ax 1 B, (18)

where

N N

(x, y ) 5 x /N, y /N .O Oi i1 2i51 i51

It implies that the curve better fits data close to the
sample means ( , ). Although our experiments arex y
large-scale 4D minimization problems, also through the
method of least squares, they probably exhibit this fea-
ture of the simple linear problem, especially when the
assimilation time window is short (5 min in our exper-
iments, less than one large-eddy turnover time). In
4DVAR, the ‘‘sample means’’ at a fixed point in space
are near the middle of the assimilation time window if
data vary monotonically, which is probably true for a
short assimilation period. Therefore, the results pre-
sented subsequently are taken from the middle of the
assimilation time window.

The correlation coefficient RF for each time step and
vertical level is calculated to measure the accuracy of
retrieved data:

^F 9F 9 &exactR 5 , (19)F rmsF 9rmsF 9exact

where scalar F9 5 F 2 ^F& designates the fluctuating
part of any retrieved velocity component or temperature
F, the subscript exact denotes the exact data, and ‘‘rms’’
means root-mean-square. Correlation coefficients and
rms errors of retrieved data averaged throughout the
boundary layer at the middle of the assimilation time
window after 50 iterations of each experiment are tab-
ulated in Table 2.

a. Initial guess

Consider experiments using 13 3D datasets as ob-
servations and updating mean surface fluxes at every
time step (cases 1–5 in Table 1). Cases 1, 2, and 3 use
velocity profiles displayed in Fig. 2 as the initial guess.
Case 1 adopts the mean velocity profiles ^Ui& averaged
over 13 observations; case 2, the same profiles with
magnitudes reduced by 20%; case 3, the same profiles
containing 20% uniformly distributed random errors ex-
pressed by (1 1 0.2e) ^Ui&, where | e | # 1. Figure 3
displays the evolution of and Ru averaged throughoutRUi

the boundary layer for these cases as a function of it-
eration number (NTER). The distribution of RV is similar
to RU and not shown. The correlation coefficients at
NTER 5 0 for all variables for all three cases fall be-
tween 0.30 and 0.40. After 50 iterations, and RuRUi

exceed 0.90 and 0.70, respectively, and continue to in-
crease slowly with iterations, suggesting that a pertur-
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TABLE 2. Correlation coefficients and rms errors averaged through-
out the boundary layer for different cases at 50 iterations at the middle
of the assimilation time window. Units: eU, ev, eW (m s21) and eu (K).

Case RU RV RW Ru eU eV eW eu

1
2
3
4
5

0.95
0.95
0.93
0.97
0.96

0.95
0.95
0.93
0.97
0.97

0.94
0.93
0.92
0.96
0.96

0.74
0.72
0.70
0.79
0.78

0.28
0.28
0.34
0.21
0.23

0.33
0.33
0.37
0.23
0.26

0.35
0.35
0.38
0.25
0.27

0.25
0.26
0.28
0.18
0.20

6
7
8
9

0.95
0.95
0.93
0.91

0.95
0.95
0.94
0.92

0.92
0.93
0.89
0.85

0.74
0.72
0.66
0.65

0.28
0.27
0.32
0.37

0.31
0.30
0.35
0.41

0.37
0.34
0.43
0.49

0.20
0.21
0.23
0.23

10
11
12
13

0.89
0.86
0.88
0.87

0.90
0.87
0.90
0.88

0.81
0.75
0.82
0.79

0.60
0.56
0.60
0.55

0.42
0.48
0.43
0.46

0.45
0.50
0.45
0.49

0.61
0.75
0.60
0.66

0.26
0.28
0.26
0.28

14
15
16
17

0.94
0.93
0.94
0.93

0.94
0.94
0.94
0.94

0.89
0.88
0.89
0.89

0.66
0.61
0.66
0.65

0.31
0.33
0.31
0.33

0.34
0.36
0.35
0.36

0.43
0.45
0.43
0.44
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FIG. 2. Mean velocity profiles used as the initial guesses for cases
1, 2, and 3.

FIG. 3. Correlation coefficients vs number of iterations for cases 1,
2, and 3.

bation to initial guess tends to decay. Here Ru is lower
than due to the lack of temperature information. TheRUi

correlation coefficients and rms errors in Table 2 indi-
cate that cases 1 and 2 yield almost the same quality of
data, and case 3 generates less accurate results, implying
that a perturbation of high spatial frequency has a slower
decay rate. The cost function value drops by about two
orders of magnitude at 50 iterations. The average of the
squares of gradients for all dependent variables drops
by about three orders of magnitude.

The first guess can be obtained alternatively using the
velocity tracking technique (Tuttle and Foote 1990).
Cases 4 and 5 examine this type of initial guess. Assume
that horizontal velocity components with a spatial res-
olution of 417 m are derived from tracking techniques
(i.e., data at every fourth grid point in the x, y direc-
tions). Horizontal velocity components at other grid
points can be estimated by applying bilinear interpo-
lation. A 20% random error denoted by uerror is added
to these components. Adopting a no-slip bottom bound-
ary condition, the vertical velocity component is cal-
culated, level by level, using the continuity equation
from the surface to the top of the domain. It was ex-
pected that this initial guess would lead quickly to the
optimal solution; instead, the 4DVAR model became

unstable at the very first iteration. The derived vertical
velocity component at the top of the CBL became so
large that the time step had to be reduced to ensure
numerical stability. The excessively strong vertical ve-
locity is attributed to error accumulation from the sur-
face to the top of the CBL through the use of the con-
tinuity equation. Reduction in the time step for the
4DVAR model is not desirable due to computer memory
requirements. A proposed remedy is to scale down the
magnitude of initial velocity components by a factor of
uscale. To guarantee convergence, uscale is found to be less
than 0.8.

Table 2 shows that case 4 with uscale 5 0.5 and case
5 with uscale 5 0.3 generate better results than case 1,
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FIG. 4. Schematic for constructing volume scan data.

FIG. 5. Vertical distributions of correlation coefficients for cases 6
and 8.which uses mean velocity profiles as the first guess. The

larger the scaling factor uscale is, the better the results
are. But a too large uscale causes numerical instability.
Thus, the initial guess for case 5 is adopted for sub-
sequent experiments presented.

b. Observational frequency

Our attention now turns to the effect of observational
frequency on retrieval. As discussed in section 3, it is
impossible to measure an ‘‘instantaneous’’ 3D dataset
in 25 s. Hence we first reduce observed datasets to three
with an interval of 2.5 min and repeat the experiment
(case 6). In order to emulate the lidar scanning feature,
various strategies utilizing the 13 3D datasets are ex-
ercised. As illustrated in Fig. 4, each of the 13 datasets
provides only a few x 2 y planes of data represented
by si at any instant, in contrast to case 1 using all avail-
able datasets as observations (only three datasets are
shown in Fig. 4 due to space constraint). Each slice of
data si is composed of several x 2 y plane data at vertical
grid levels iz ranging from m to n denoted by ‘‘iz 5 m
2 n.’’ Case 7 uses three volume scan data with a scan-
ning sequence of [s1(iz 5 1 2 6), s2(iz 5 7 2 12), s3(iz
5 13 2 18), s4(iz 5 19 2 24), s1(iz 5 1 2 6), s2(iz
5 7 2 12), s3(iz 5 13 2 18), s4(iz 5 19 2 24), s1(iz
5 1 2 6), s2(iz 5 7 2 12), s3(iz 5 13 2 18), s4(iz 5
19 2 24), s5(iz 5 25 2 45)] provided by observation
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13), respectively.
Observation I is taken at [(I 2 1) 3 25 1 To] s, where
To is the time of observation 1. The time interval of
these observations is 25 s. Since turbulence intensity
above the inversion layer (iz 5 24) is weak, little in-
formation is needed there. Except for slice s5 above the
inversion layer, data for each of the slices si are available
at three different times, thereby referred to as ‘‘three
volume scan data.’’

In like manner, for case 8 two volume scan data are

constructed with the sequence of [s1(iz 5 1 2 4), s2(iz
5 5 2 8),s3(iz 5 9 2 12), s4(iz 5 13 2 16), s5(iz 5
17 2 20), s6(iz 5 21 2 24), s1(iz 5 1 2 4), s2(iz 5 5
2 8), s3(iz 5 9 2 12), s4(iz 5 13 2 16), s5(iz 5 17
2 20), s6(iz 5 21 2 24), s7(iz 5 25 2 45)] provided
by observation (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13),
respectively. Radial velocity data at si with i 5 1 to 6
are available at two different times, and referred to as
‘‘two volume scan data.’’

Cases 6, 7, and 8 have the same starting point because
of the same first guess. After 50 iterations RU and RV

for the three cases are higher than 0.93; RW is higher
than 0.92 for cases 6 and 7, and is 0.89 for case 8 (Table
2). Figure 5 reveals that the vertical profiles of forRUi

cases 6 and 8 almost collapse except near the inversion
layer where the correlation coefficients begin to drop
off. It appears that the stronger the turbulence intensity
is, the better the retrieval quality is. The drop-off phe-
nomenon is attributable to infrequent turbulence activity
above the inversion layer, where RF is not well defined.
In addition, for case 8, data above the inversion layer
are available only at a single time; the retrieval quality
in that region is expected to be poorer than for case 6.
Two volume scans of radial velocity data are generally
sufficient to recover reasonably accurate 3D velocity
vector fields. For temperature retrieval, the rms errors
eu for cases 6, 7, and 8 are 0.20, 0.21, and 0.23 K,
respectively (Table 2). Recall that case 6 uses three in-
stantaneous 3D datasets, case 7 three volume scan data,
and case 8 two volume scan data. A comparison with
case 5, which uses the full 13 sets of data and whose
eu 5 0.20 K, indicates that temperature retrieval is less
sensitive to observational frequency because observa-
tions contain no temperature information. The minimum
Ru is found around z/zi ø 0.84 (Fig. 5) where the min-
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FIG. 6. Vertical distributions of the rms errors of retrieved data for
case 8.

imum temperature variance is located (Fig. 1b). Figure
6 shows the vertical profiles of the rms errors of data
retrieved from case 8. The distributions roughly parallel
those of variances shown in Fig. 1b, indicating that the
rms error of retrieved data is approximately proportional
to turbulence intensity.

To explore the optimal solution obtainable with two
volume scan data, the number of iterations for case 8
is increased to 400. The resulting RU, RV, RW, and Ru

averaged throughout the boundary layer are 0.97, 0.97,
0.94, and 0.72, respectively; eU, eV, eW, and eu are 0.22,
0.24, 0.29 m s21, and 0.21 K. These numbers are quite
satisfactory considering the lack of temperature infor-
mation. Figures 7 and 8 show the retrieved instantaneous
velocity vector and temperature at three selected heights
after 400 iterations. The exact data used to compute
radial velocity are also displayed for comparison. Sev-
eral convergence lines (updraft motions) and divergence
regions (downdraft motions) are discernible near the
surface. Strong convergence lines are spatially corre-
lated with strong temperature fluctuation in Fig. 8. The
temperature field is well retrieved only in the lower part
of the CBL (Figs. 8a1 and 8b1). Some updrafts extend
higher up into the mixed layer and then are capped by
the inversion layer, creating a diverging velocity vector
field near the top of the CBL (Fig. 7c1).

We next examine the sensitivity of retrieval quality
to vertical range resolution because PPI scans could
have various elevation angles. Case 9 uses x 2 y plane
date at every other vertical grid level and adopts the
scanning sequence of [s1(iz 5 1, 3), s2(iz 5 5, 7), s3(iz
5 9, 11), s4(iz 5 13, 15), s5(iz 5 17, 19), s6(iz 5 21,
23), s1(iz 5 1, 3), s2(iz 5 5, 7), s3(iz 5 9, 11), s4(iz 5

13, 15), s5(iz 5 17, 19), s6(iz 5 21, 23), s7(iz 5 25,
27, 29, 31, 33, 35, 37, 39, 41, 43, 45)] provided by
observation (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13),
respectively. Here si(iz 5 m 2 n) means that iz varies
from m to n; si(iz 5 m, n) indicates iz 5 m and n. The
values of RU, RV, RW, and Ru at 50 iterations for case
9 are 0.91, 0.92, 0.85, and 0.65, respectively. They are
0.93, 0.94, 0.89, and 0.66 for case 8, which uses twice
the data density in the vertical direction. Data with re-
duced vertical spatial resolution appear to give satis-
factory retrieval. It is probably because the vertical
length scale is characterized by large-scale thermals
capped by the inversion layer. Reduced vertical data
points still adequately capture large-scale thermal mo-
tions.

c. Observational error

In this section we study the effect of observational
error on retrieval accuracy. The absolute error associated
with lidar depends on several factors, such as the num-
ber of pulses averaged and the range. As a rule of thumb,
radial velocity estimation is considered good so long as
the wideband signal-to-noise ratio (SNR) is greater than
210 dB (R. Newsom, NOAA, 1999, personal com-
munication).

For case 10, a random error in the range of 60.5 m
s21 with an rms value of 0.29 m s21 is added to the
radial velocity data throughout the computational do-
main. The selected value roughly corresponds to typical
measurement error averaging 100 lidar pulses in a 3-
km range on a day with very clear air. The scanning
strategy of case 8 (two volume scan data in 5 min) is
adopted for subsequent cases. Figure 9 shows correla-
tion coefficients averaged throughout the boundary lay-
er versus number of iterations for cases 8 and 10. In
contrast to cases without random errors where corre-
lation coefficients increase monotonically with iteration
to asymptotes, the correlation coefficients for case 10
first increase rapidly reaching maxima of RU 5 0.89,
RV 5 0.90, RW 5 0.81, and Ru 5 0.60 at NTER 5 30,
then drop to 0.80, 0.82, 0.72, and 0.51 at NTER 5 200.
The degraded data indicates that the error added alters
the shape of the cost function and its minimum as well.
If the first guess is far from the minimum, the improved
solution will first approach both true and altered minima,
then deviate from the true minimum as it approaches
the altered minimum. Hence as iterations increase, cor-
relation coefficients decrease. The vertical distributions
of these coefficients (Fig. 10) indicate that RU and RV

still retain a high value of 0.90 throughout the boundary
layer, RW drops about 0.10 everywhere retaining a high
value of 0.85 in the region of 0.1 # z/zi # 0.8, and Ru

is reduced by about 0.08 near the surface.
The effect of error amplitude on retrieval quality is

next investigated. Figure 11 displays the amplitude of
random error against correlation coefficients and rms
errors of retrieved data at 50 iterations. The horizontal
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FIG. 7. Horizontal fluctuating velocity vector and contours of vertical fluctuating velocity (in m s21) at z/zi: (a1) and (a2) 0.085, (b1) and (b2)
0.51, and (c1) and (c2) 0.935 for (left) case 8 after 400 iterations. (right) The exact data are used to generate the radial velocity field.
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FIG. 8. Contours of fluctuating temperature (in K) at z/zi: (a1) and (a2) 0.085, (b1) and (b2) 0.51, (c1) and (c2) 0.935 for (left) case 8
after 400 iterations. (right) The exact temperature field.
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FIG. 9. Correlation coefficients vs number of iterations for cases 8
and 10.

FIG. 10. Vertical distributions of the correlation coefficients for
cases 8 and 10 at NTER 5 50.

FIG. 11. Correlation coefficients RU, RV, RW, and Ru and rms errors
eU, eV, eW, (in m s21), and eu (in K) of retrieved data at NTER 5 50
vs amplitude of random error Aerr added to radial velocity . TheobsU rad

rms value of the random error is about 0.58 3 Aerr. These data are
taken from the middle of the assimilation time window.

velocity components are always more accurate than the
vertical velocity component, perhaps because the error
added is small relative to the (total) horizontal velocity
components but large relative to the vertical velocity
component, whose mean value is essentially zero (Fig.
1a). The rms error of retrieved temperature varies from
0.24 to 0.36 K and is less sensitive to error amplitude.

The above sensitivity test offers an opportunity to
address the issue regarding the condition of the mini-
mization problem, which characterizes the sensitivity of
its solution (retrieved data) with respect to perturbations
in the observational data. Mathematically the condition
number that depends on the problem as well as the
observational data is used to determine whether the
problem is well-posed or ill-posed. For large-scale min-
imization problems, it is impossible to compute the con-
dition number. However, random errors added to the
observational data can be regarded as perturbations to
the data. Since an ill-posed problem with a very large
condition number tends to produce unbounded error in
its solution upon small perturbations added to the data,
we can assess the condition of our retrieval experiments
from the retrieved data. Figure 11 shows that with the
largest error amplitude added, 1.5 m s21 (slightly higher
than the maximum velocity fluctuation 1.2 m s21), the
maximum rms error of the retrieved data eW is about
1.10 m s21 and RW is around 0.60. We argue that even
with large perturbations to the observational data, the
errors in the retrieved data are bounded, so our mini-
mization problems are well-posed.

Since observational error can be spatially correlated,
the errors added to cases 11, 12, and 13 are, respectively,
vertically, horizontally, and both vertically and hori-
zontally correlated. For case 11, the random error is
applied to the x–y plane data at every fourth vertical
grid level and then linearly interpolated to the other

points. The linear interpolation serves to correlate errors
in space. For case 12, the random error is applied to
the y–z plane data at every fourth grid point in the x
direction and then interpolated to the other points. In
the same fashion for case 13, the random error is added
to every fourth grid point in the respective x, y, z di-
rections. The error amplitudes for these cases are ad-
justed to produce the same rms error of 0.29 m s21;
they are 0.6, 0.6, and 0.86 m s21 for cases 11, 12, and
13. The retrieval sensitivity of a mesoscale collapsing
cold pool to the error in the velocity data was studied
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FIG. 12. Vertical distributions of the correlation coefficients for
cases 14, 15, and 17.

by Sun and Crook (1996). They found that the adjoint
model performs equally well for random and spatially
correlated errors.

The evolution of correlation coefficients with iteration
for these cases resembles that in case 10 and is not
shown. Their average correlation coefficients and rms
errors are listed in Table 2. Roughly, case 10 yields
about the same retrieval quality as case 12, case 11 has
about the same results as case 13. Data retrieved from
cases 11 and 13 are less accurate than those from cases
10 and 12. In view of cases 11 and 13 containing ver-
tically correlated errors, the effect of correlated errors
is probably more pronounced in the vertical direction
than in the horizontal. This phenomenon may be related
to the characteristic length scales of turbulent eddies in
the horizontal and vertical directions. The vertical length
scale of energy-containing updrafts and downdrafts is
about the CBL height (980 m), which is larger than the
length scale of the vertically correlated error (168 m, 4
grid points). In contrast, the spectrum of the horizontal
length scale is much wider due to the periodic homo-
geneous horizontal physical domain and combined
shear-buoyancy effect. For instance, the width of elon-
gated updrafts near the surface (Fig. 7a1) may occupy
less than four grid points, the grid size of the correlated
error. A consequence is that eddy structures of high
spatial frequency do not effectively sense the low-fre-
quency noise, namely, the horizontally correlated error.
The accuracy of retrieved data can be further improved
by imposing temporal and spatial penalty constraints,
so the effect of observational error will be revisited in
section 4f.

d. Surface flux model

Two approaches are applied to calculate mean surface
fluxes using Eqs. (7)–(12) (section 2). One approach is
to update mean surface momentum and temperature
fluxes at each time step using data from the previous
time step of the current iteration (denoted by ISUFT 5
1). The other approach is to average data retrieved from
the immediately previous iteration at the beginning of
each new iteration (denoted by ISUFT 5 2). Accord-
ingly mean flux calculation is lagging behind. Cases 1–
13 adopt ISUFT 5 1, case 14 ISUFT 5 2. The corre-
lation coefficients and rms errors for case 8 with ISUFT
5 1 and case 14 with ISUFT 5 2 (Table 2) show that
the two methods lead to almost identical results. Case
15, which uses the gradient-free bottom boundary con-
dition of the original SDPR system, shows degraded
retrieved temperature data (Table 2). In Fig. 12, the
quality of the retrieved temperature deteriorates as the
surface is approached.

Case 16 uses Eqs. (5) and (6) with constant momen-
tum and temperature fluxes specified prior to assimi-
lation, denoted by ISUFT 5 0. From the simulated CBL
we have mean flux values: ^t13& 5 20.3618 m2 s22,
^t23& 5 20.0378 m2 s22, and ^tu3& 5 0.24 K m s21.

This case produces results almost the same as case 14.
Case 17 uses the Dirichlet bottom boundary condition
for horizontal velocity components, specifying U 5 V
5 0 m s21 at the surface. This type of boundary con-
dition allows production of surface fluxes proportional
to the vertical velocity gradient. Figure 12 shows that
the no-slip (Dirichlet) bottom boundary condition pro-
duces better results than the gradient-free (Neumann)
condition. Data retrieved using both bottom boundary
conditions, however, are less accurate than with the sur-
face flux model.

e. Eddy viscosity and diffusivity

The LES technique requires a sophisticated SGS
model to produce good turbulence statistics. The physics
of SGS motions and their interactions with the resolved-
scale motions, however, are far from being understood
(Lin 1999) and its parameterizations have room for im-
provement. The primary difference between the 4DVAR
and the LES is that the former is driven by observational
data of short duration, while the latter is driven by the
model until reasonable turbulence statistics are pro-
duced. Implementation of a sophisticated SGS model
into the 4DVAR requires more memory and computing
time. Designing a physics-based SGS model is chal-
lenging and whether the 4DVAR requires a sophisti-
cated SGS model is an open question. In this section,
results from a series of retrieval experiments based on
the height-dependent eddy viscosity model are pre-
sented below to shed light on this issue.

Figure 13 shows the vertical profiles of eddy viscosity
n and diffusivity k used to generate observational data.
The increasing intensity of shear-generated turbulence
near the surface reflects on increasing eddy viscosity.
The turbulent Prandtl number in the mixed layer is about
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FIG. 13. Vertical profiles of eddy viscosity n and diffusivity k (m2

s21). Here nm (or km) is the n (or k) averaging those below and above
iz 5 24 (z/zi 5 1.02).

1/3. All retrieval experiments presented so far use these
profiles in calculation. For case 18, n and k are increased
by a factor of two from the original profiles. For case
19, they are reduced by a factor of two. A decrease in
eddy viscosity and diffusivity (case 19) leads to lower
correlation coefficients and larger rms errors than in case
8. An increase (case 18) surprisingly leads in the op-
posite direction (Table 2). For case 20, n and k are
increased by a factor of 4 and temperature retrieval is
poor. It is perhaps because the too strong n and k smooth
out finescale turbulent structures. Thus retrieval quality
can be improved only if n and k are increased within
a certain range.

The retrieval sensitivity to the turbulent Prandtl num-
ber Prt is investigated by increasing or decreasing n or
k by a factor of two (cases 21, 22, 23, and 24 in Table
1). A comparison of correlation coefficients and rms
errors for these cases (Table 2) shows in case 23 that
increasing k alone generates the best retrieved data,
nearly as good as those using 2n and 2k (case 18). It
implies that retrieval quality is less sensitive to error in
n approximation and more sensitive to k. The turbulent
Prandtl number does not seem critical. Why an increase
in eddy diffusivity yields more accurate data will be
clarified in the next section.

Cases with height-dependent eddy viscosity and dif-
fusivity are also compared with those with constant
ones. Since turbulence intensity above the boundary lay-
er is weak, the values of n and k for case 25 are obtained
by averaging those above and below z/zi 5 1. The pro-
files of mean n and k denoted by nm and km are displayed
in Fig. 13. Data recovered using nm and km (case 25)
are almost as accurate as their height-dependent coun-
terpart (case 8). Doubling the values of nm and km gives
case 26 better retrieved data. Also tested are cases with

2nm and km and with nm and 2km. The former yields
results nearly identical to case 25 and the latter to case
26. These results indicate that improved retrieval ac-
curacy is essentially attributed to an increase in eddy
diffusivity k, consistent with findings for height-depen-
dent n and k. The implication is that a sophisticated
SGS model may have limited effect on retrieval quality.

f. Penalty function

Long and Thacker (1989) have demonstrated that the
use of a spatial smoothness constraint for data assimi-
lation into an equatorial ocean model improves the ac-
curacy of the retrieved data. Sun et al. (1991) and Sun
and Crook (1996) also found that the temporal and spa-
tial smoothness constraints provide supplemental infor-
mation on the retrieved variables and accordingly yield
better solutions. In addition, the effect of these penalty
functions is enhanced if observational data are missing
or include substantial errors. The temporal smoothness
function added to the cost function [Eq. (13)] takes the
form:

2 2 2P 5 [g (d U ) 1 g (d V ) 1 g (d W )O Ot u tt y tt w tt
t x,y,z

21 g (d u) ] (20)u tt

where

1 0F 2 F if n 5 0 (n : time index),
d F 5tt n11 n n215F 2 2F 1 F if n $ 1.

The spatial smoothness function appended to the cost
function is

2 2P 5 [z (d U ) 1 z (d V )O Os u x x y x xi i i i
t x,y,z

2 21 z (d W ) 1 z (d u) ] (21)w x x u x xi i i i

where

2 2(d F ) 5 (F 2 2F 1 F )x x i11, j,k i, j,k i21, j,ki i

21 (F 2 2F 1 F )i, j11,k i, j,k i, j21,k

21 (F 2 2F 1 F ) ,i, j,k11 i, j,k i, j,k21

and i, j, k are the running indices in the respective x, y,
z directions. Determination of the penalty constants g
and z is empirical and requires experience. However,
one basic requirement is that the penalty terms cannot
dominate the cost function. Here g u 5 gy 5 0.1, g w 5
0.5, and g u 5 1.0 were chosen as temporal smoothness
constants, and zu 5 zy 5 zw 5 0.00005 and zu 5 0.001
as spatial smoothness constants. The cases presented
below include observational error as described in sec-
tion 4c.

Case 27 applies spatial smoothness only and includes
random observational error. Parameters for case 28 are
those for case 27 except that eddy diffusivity is in-
creased by a factor of 2. For case 29, both temporal and
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FIG. 14. Correlation coefficients RU, RV, RW, and Ru and rms errors
eU, eV, eW (m s21), and eu (in K) of retrieved data at NTER 5 50 vs
amplitude of random error Aerr added to radial velocity . The rmsobsU rad

value of the random error is about 0.58 3 Aerr. Temporal an spatial
smoothness penalty constraints are imposed. These data are taken
from the middle of the assimilation time window.

spatial smoothness penalty terms are employed. The fol-
lowing conclusions are based on correlation coefficients
and rms errors listed in Table 2. First, smoothness pen-
alty terms do improve retrieved data quality. Second,
doubling eddy diffusivity further improves retrieval
quality. Due to a lack of temperature information, the
doubled eddy diffusivity may act as a spatial smoother,
exchanging information with nearby nodes. Third, the
spatial smoothness constraint is more effective than the
temporal one in improving retrieval accuracy. Recall
that all the retrieval experiments were carried out in a
moving reference frame to increase the numerical sta-
bility limit. As a result, turbulent structures are advected
slowly in the reference frame, reducing the time rate
change of dependent variables at fixed spatial points.
This may explain why temporal smoothness is less ef-
fective in experiments.

To examine the effect of error amplitude, experiments
shown in Fig. 11 are repeated by imposing temporal
and spatial smoothness penalty constraints. Figure 14
shows that smoothness penalty constraints considerably
improve retrieval quality over a wide range of error
amplitude. The relationship between the rms errors of
retrieved velocity and the error amplitude appears to be
linear. The rms error of retrieved temperature remains
approximately constant at about 0.2 K regardless of er-
ror amplitude.

Experiments containing spatially correlated errors
(cases 11, 12, and 13) are next revisited by applying
both temporal and spatial smoothness penalty con-
straints. These are designated as cases 30, 31, and 32.
They have the same rms observational error as case 29,

requiring error amplitudes to be 0.50, 0.60, 0.60, and
0.86 m s21 for cases 29, 30, 31, and 32. The correlation
coefficients and rms errors for these cases differ sig-
nificantly from those for cases 10, 11, 12, and 13 without
smoothness penalty terms, showing that smoothness
penalty constraints improve accuracy of retrieved data
in the presence of various sources of error. With random
error, case 29 yields the best results. Cases with verti-
cally (case 30) or horizontally (case 31) correlated errors
recover velocity and temperature fields of comparable
quality. With observational errors correlated in vertical
and horizontal directions, case 32 yields the least ac-
curate results. This may be due to the large error am-
plitude employed to attain the rms observational error
of other cases.

5. Conclusions

The 4DVAR model developed by Sun et al. (1991)
had been demonstrated as capable of retrieving meso-
scale atmospheric flow structures. We have further im-
plemented two new features into this model to retrieve
microscale turbulent structures in the atmospheric
boundary layer for fundamental research and opera-
tional application. One feature, the surface flux model,
produces appropriate momentum and temperature fluxes
at the first vertical grid level based on Monin–Obukhov
similarity theory. The other feature allows eddy vis-
cosity and diffusivity to vary with height, taking into
account the effect of varying turbulence intensity with
height. The study attempts to assess the applicability of
the model to retrieve microscale turbulent structures in
the CBL; determine the value of model control param-
eters for optimal retrieval, including observational fre-
quency, number of iterations, and temporal and spatial
smoothness coefficients; and evaluate the relationship
between retrieval quality and data error. We have carried
out a number of identical twin experiments whose ob-
servational data are generated by the 4DVAR itself. The
results demonstrate that the 4DVAR technique retrieves
wind well for all cases, but is less accurate for tem-
perature retrieval.

The sensitivity of retrieval quality to the initial guess
is examined by testing several initial guesses. The re-
sults show that retrieval is less sensitive to the first
guess. The sensitivity to observational frequency is next
examined. To imitate the scanning feature of lidar, dif-
ferent strategies for sampling observational data are
practiced. At one extreme, only two volume scan da-
tasets are provided to the model. The accuracy of re-
trieved velocity and temperature data measured by the
correlation coefficient and rms error is still quite sat-
isfactory. With increasing observational frequency, the
accuracy of retrieved temperature data is notably im-
proved. Applying an adaptive scanning strategy might
improve retrieval quality at desired locations by in-
creasing regional observational frequency.

The sensitivity of retrieval quality to data errors of
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various amplitude and spatial correlation is also inves-
tigated. The study finds that retrieval without temporal
and spatial smoothness penalty constraints is less sen-
sitive to horizontally correlated error. This may be at-
tributed to diverse horizontal length scales of turbulent
eddies as compared with that of the correlated error.
Smoothness penalty constraints significantly improve
retrieval quality. The retrieved velocity vector fields
with smoothness constraints become less sensitive to
spatially correlated error.

Implementation of the surface flux model improves
the accuracy of retrieved temperature, especially in the
lower mixed layer. Use of the Dirichlet boundary con-
dition at the surface for horizontal velocity components
and temperature yields better results than does the Neu-
mann boundary condition.

Doubling eddy diffusivity improves retrieval quality.
The diffusive term may act as an effective spatial
smoothness function, exchanging information on spatial
correlation of data and improving retrieval quality when
data are lacking. Height-dependent eddy viscosity and
diffusivity retrieve data of quality comparable to con-
stant ones, implying that retrieval is driven more by the
observations than by the subgrid-scale model within the
assimilation time window.

The spatial smoothness penalty constants for the re-
trieval of microscale structures are much smaller than
those previously used for the mesoscale cases (Sun and
Crook 1994). This may be due to the large number of
grid points used in the retrieval of microscale flow struc-
tures and the large second-order derivative associated
with microscale turbulent eddies. The smoothness pen-
alty constraints greatly improve the retrieval of micro-
scale structures and will be applied to real data retrieval.

In summary, the existing 4DVAR technique has been
enhanced and extended to accurately retrieve microscale
turbulent eddy structures in a simulated CBL. Assimi-
lation of two volume scan radial velocity data spanning
5 min into the 4DVAR model can recover sufficiently
complete 3D velocity and temperature data. Various bot-
tom boundary conditions are evaluated and smoothness
constants for optimal retrieval are recommended. The
adverse effect of spatially correlated errors on retrieval
quality is reduced by imposing smoothness penalty con-
straints. The controlled increase of eddy diffusivity can
improve retrieval quality. These conclusions are based
on identical twin experiments. Application of this tech-
nique to real data requires further investigation.
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