Progress in Inverse Modeling of Aerosols Using the Adjoint Method

Daven K. Henze John H. Seinfeld

QuickTime?and a TIFF (Uncompressed) decompressor are needed to see this picture. Wenyuan Liao Adrian Sandu Gregory. R. Carmichael

NSF-ITR Boulder Meeting 6-16-2004

Goal

Provide improved estimates of the magnitude and the variability (spatial and temporal) of emissions of aerosols and aerosol precursors by performing a 4-D variational assimilation study in which aerosol measurements (surface, satellite) are used as input for an adjoint model of a large scale CTM.

Presentation Overview

Adjoint models of aerosols

- Detailed adjoint of growth due to condensation / evaporation
- Hybrid model (forward and reverse sensitivities)
- Adjoint of gas aerosol equilibrium

Adjoint CTMs

- Fitting adjoint aerosol routines into CTMs
- Which pieces to work on next

Test System

Three components

Species 1: fine mode, condensing

Species 2 : coarse mode, evaporating

Species 3: broad mode, not evaporating

or condensing.

• Distribution discretized into 8 bins

$$D_{p} \min = 0.039 \ \mu m$$

$$D_p \max = 10.0 \mu m$$

Forward Model: evolution due to condensation / evaporation of an aerosol distribution governed by the aerosol dynamics equation

$$\frac{\partial p_i}{\partial t} = H_i p - \frac{1}{3} \frac{\partial}{\partial \mu} [H p_i]$$

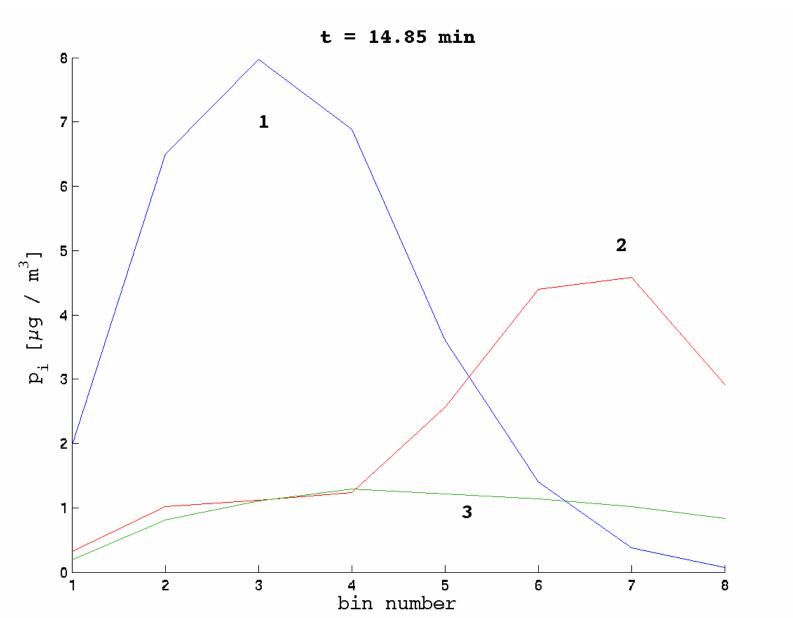
where $p_i = p_i(\mu, t)$ is the mass distribution of the *i*th species $H_i = H_i(p_1, ..., p_Q; \mu, t)$ is the growth rate for the *i*th species $H = \sum_{i=1}^{Q} H_i$, $p = \sum_{i=1}^{Q} p_i$

with "ideal" growth rate

$$H_i = \frac{2\pi D_p D_i}{m(1 + \frac{2\lambda}{\alpha_i D_p})} (g_i - x_i c_i^{\circ})$$

where $g_i = \text{gas phase concentration of the } i\text{th species}$ $c_i^0 = \text{pure component surface vapor concentration of the } i\text{th species}$

Forward Model



Adjoint of Cond / Evap *Inverse Modeling Problem*

Goals

- Recover the initial distribution
- Recover the pure component vapor concentrations, c_i^0

Implementation

- Compare continuous vs discrete formulation
- Attempt inversion with sparse observations (time, size space, chemical resolution)

Adjoint of Cond / Evap Continuous Adjoint Model

Take variation of augmented cost function

$$\delta \mathcal{J} = \int_{t^0}^T \int_0^\infty \sum_{i=1}^n \frac{\partial J_0}{\partial p_i} \delta p_i(\mu, t) \, d\mu \, dt - \int_{t^0}^T \int_0^\infty \sum_{i=1}^n \delta \lambda_i(\mu, t) (LHS_{p_i} - RHS_{p_i}) \, d\mu \, dt$$

$$-\int_{t^0}^T \int_0^\infty \sum_{i=1}^n \lambda_i(\mu, t) \delta(LHS_{p_i} - RHS_{p_i}) \, d\mu \, dt$$

Collected remaining terms yields adjoint equation

$$\frac{\partial \lambda_i}{\partial t} = -\sum_{j=1}^n \lambda_j H_j - p \sum_{j=1}^n \lambda_j \frac{\partial H_j}{\partial p_i} - \frac{1}{3} \sum_{j=1}^n p_j \frac{\partial \lambda_j}{\partial \mu} \frac{\partial H}{\partial p_i} - \frac{H}{3} \frac{\partial \lambda_i}{\partial \mu} - \frac{\partial J_0}{\partial p_i}$$

Solve this numerically from t = T to $t = t^0$

$$\lambda_i(\mu, T) = 0$$
$$\lambda_i(\mu, t^0) = \nabla_{p_i^0} \mathcal{J}$$

Adjoint of Cond / Evap Discrete Adjoint Model

Discretize the governing equation

$$[p_i]_j^k = F_j(p_i^{k-1}, g_i^{k-1})$$

$$k = 1, ..., N = \# \text{ time steps}$$

$$i = 1, ..., Q = \# \text{ species}$$

$$j = 1, ..., S = \# \text{ of size bins}$$

$$[p_i]_j^k = \text{ particulate concentration of species } i \text{ in bin } j \text{ at time step } k$$

$$p^k = \text{ vector of all particulate concentrations}$$

$$g^k = \text{ vector of all gas concentrations}$$

Express the desired gradient using the chain rule

$$\nabla_{p^0} J = \left[\frac{\partial p^1}{\partial p^0}\right]^T \left[\frac{\partial p^2}{\partial p^1}\right]^T \dots \left[\frac{\partial p^N}{\partial p^{N-1}}\right]^T \left[\frac{\partial J(p^N)}{\partial p^N}\right]$$

Adjoint of Cond / Evap Discrete Adjoint Model

Define the adjoint variable λ as

$$\mathcal{X}^{k} = \left[\frac{\partial p^{N}}{\partial p^{k}}\right]^{T} \left[\frac{\partial J(p^{N})}{\partial p^{N}}\right] = \nabla_{p^{k}}J$$

Calculate the desired gradient using the iterative loop

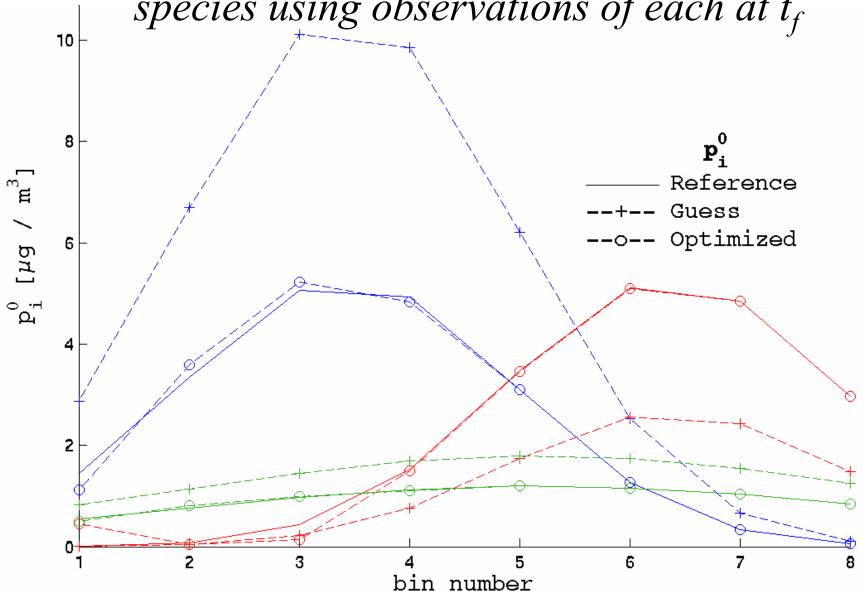
DO k = N, 1, -1
$$\lambda^{k-1} = \left[\frac{\partial p^k}{\partial p^{k-1}}\right]^T \lambda^k$$

ENDDO

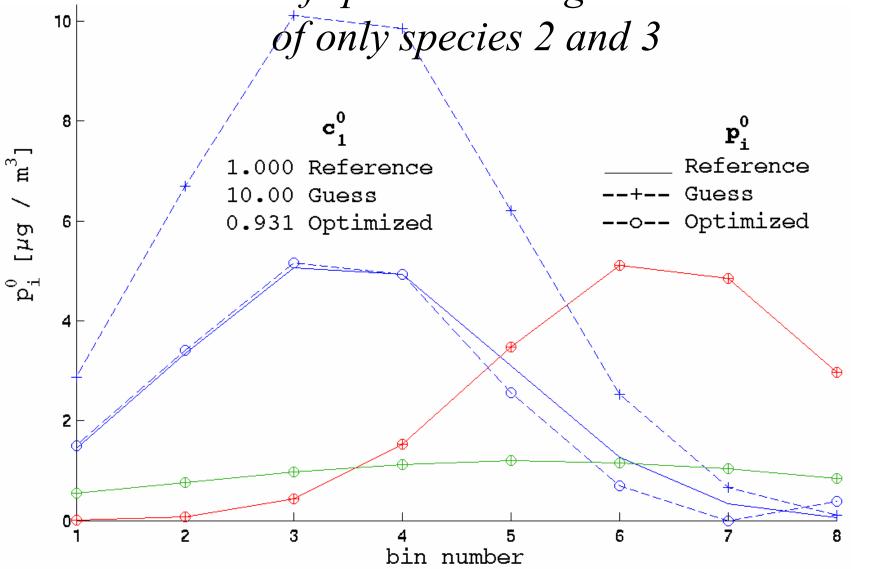
where
$$\left[\frac{\partial p^k}{\partial p^{k-1}}\right]^T$$
 is found at each step using TAMC¹

[1] Giering, R., and T. Kaminski, Recipes for Adjoint code Construction, *ACM Transactions on Mathematical Software*, 24 (4), 437, 1998.

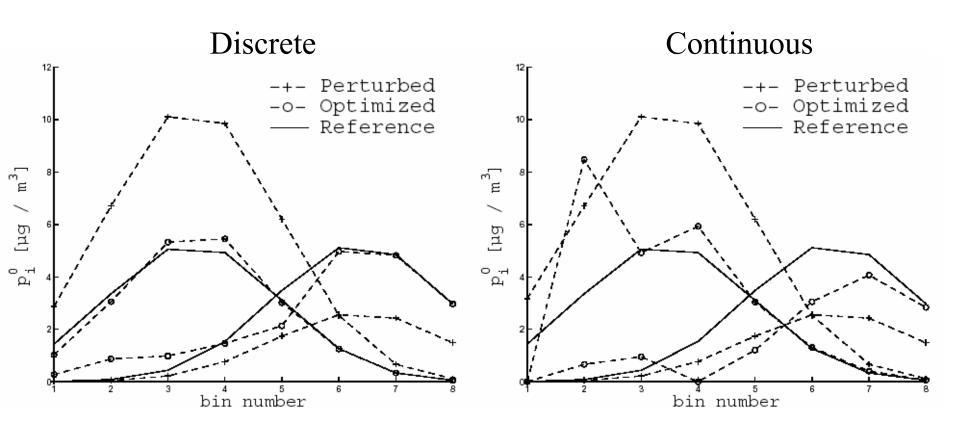
Recovering initial distributions of all three species using observations of each at t_f



Recovering initial distribution and pure vapor concentration of species 1 using observations at t_f



Adjoint of Cond / Evap Discrete vs Continuous



Long Assimilation Period

The crux of inverse aerosol modeling: Thermodynamics

Highly nonlinear behavior

Difficult to derive analytical expressions for chemical equilibrium

=> can't derive continuous adjoint

Difficult to construct discrete adjoint code

- Complex data relationships hinder manual construction
- Use of commands (RETURN, GOTO, ...) not amenable to AD

Inverse Thermodynamics Possible Approaches

Simplify the thermodynamics

- As used in large scale models (GEOS-CHEM)
- Limited chemical possibilities (MARS)

Obtain more robuts AD tools

- ADIFOR 3.0
- TAF (\$\$)

Calculate derivatives using alternative methods

- Hybrid approach
- Tabulated offline analysis

Hybrid Approach

Forward differentiation using TAMC

• Tangent linear derivative:

$$TAMC(y, x, v) = \frac{\partial y}{\partial x} \cdot v$$

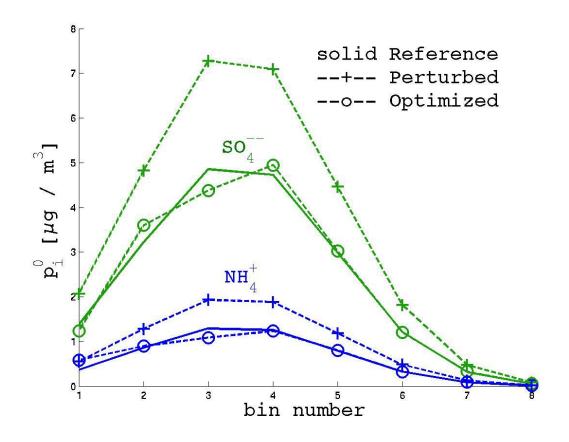
• The full Jacobian:

$$TAMC(c_i^{\circ}, p_i^{k-1}, I_{n \times m}) = \frac{\partial c_i^{\circ}(p_i^{k-1})}{\partial p_i^{k-1}}$$

Use the transpose of this for the adjoint routine

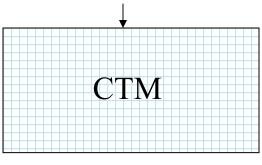
Hybrid Approach

Recovering NH_4^+ and SO_4^- at t = 0 based on measurements after 1 hour (NH_3 condensing)

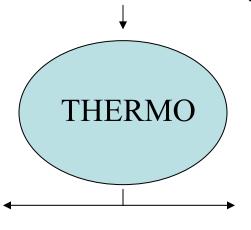


Simple Equilibrium Treatment

Emissions (NH₃, NO_x, SO₂, VOCs)



Total Concentrations (NH₃, HNO₃, SO₄²-)

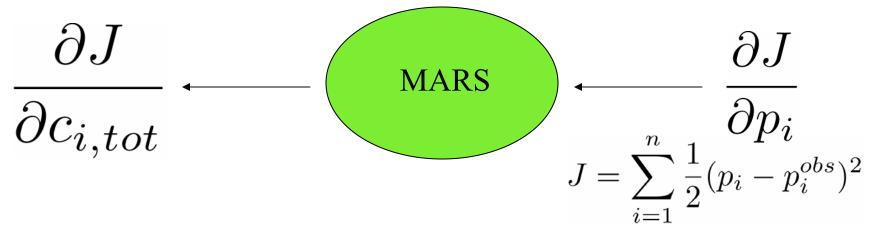


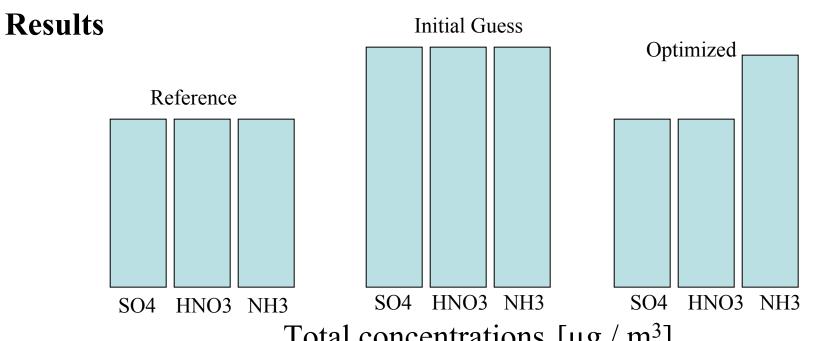
Aerosol Phase

NO₃-, NH₄+, SO₄²-H₂O, HSO₄- Gas phase

 HNO_3 , NH_3

Adjoint of Equilibrium Model



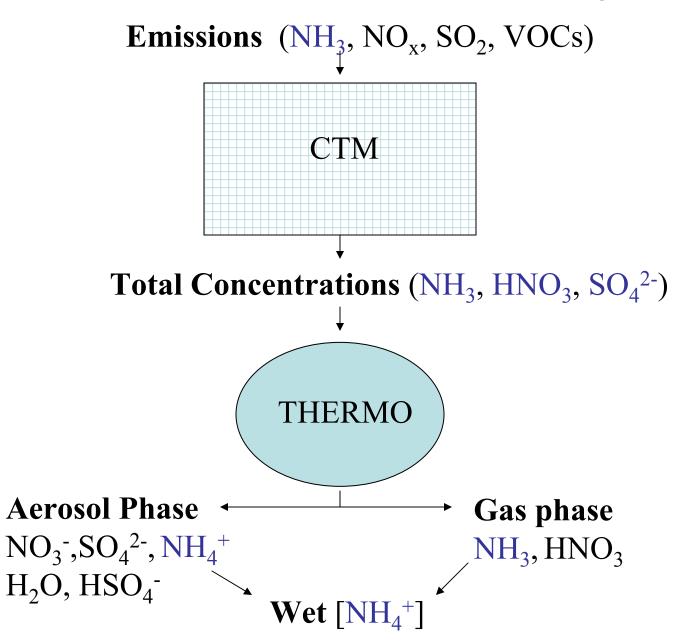


Total concentrations [µg / m³]

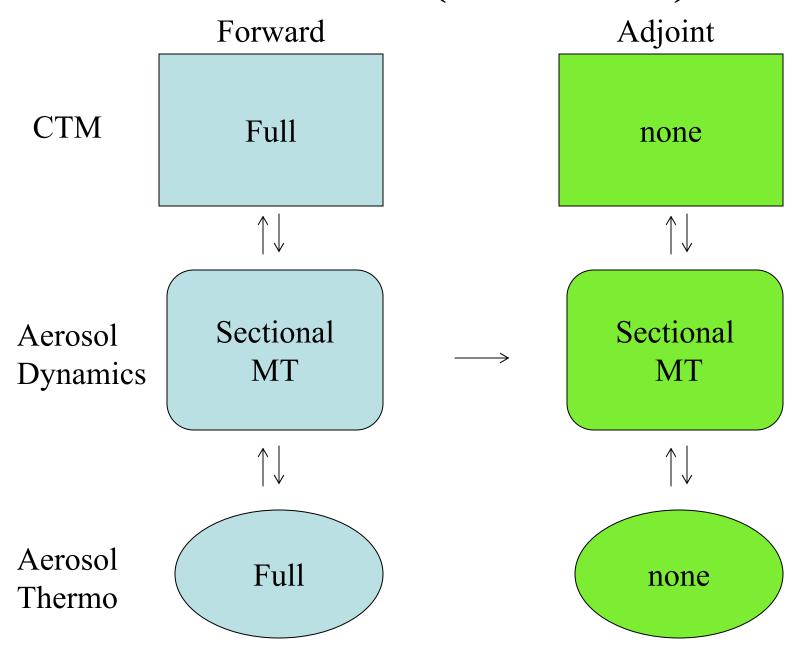
Constraining NH₃

Emissions (NH₃, NO_x, SO₂, VOCs) **CTM** Total Concentrations (NH₃, HNO₃, SO₄²⁻) **THERMO Aerosol Phase** Gas phase NO_3^- , SO_4^{2-} , NH_4^+ NH₃, HNO₃ H_2O , HSO_4

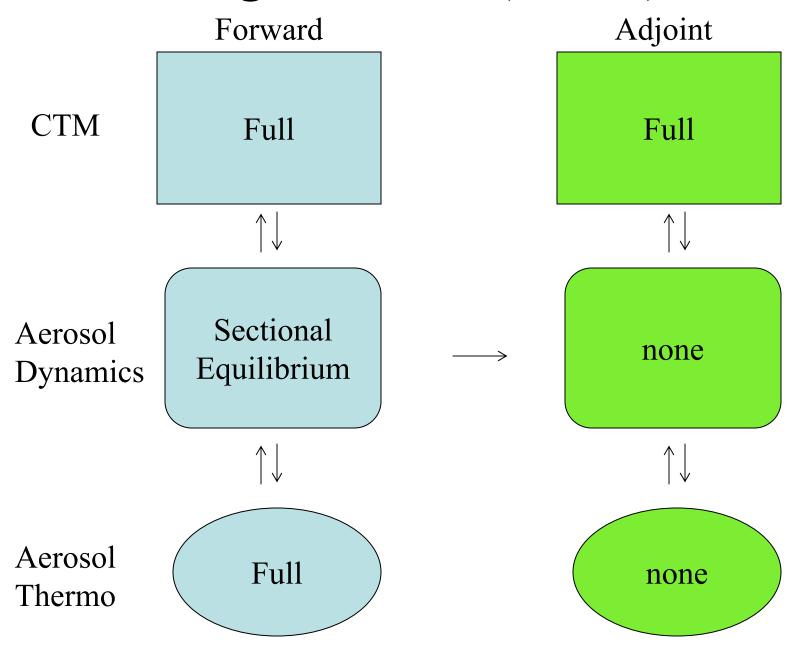
Constraining NH₃



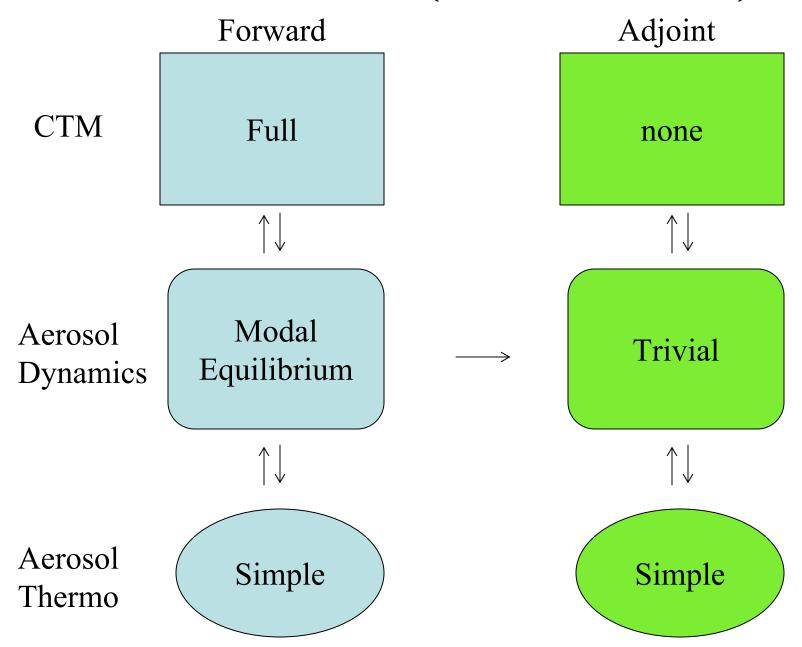
Local Scale (CIT Model)



Regional Scale (STEM)



Global Scale (GEOS-CHEM)



Future work

Regional Scale

• Adjoint of equilibrium, sectional aerosol dynamics

Global & Local Scale

Adjoint of the rest of the model

All Scales

- Decide on treatment of thermodynamics
 - simplify
 - approximate
 - hybrid

Previous inverse modeling studies of PM

 Model	Mendoza-D. et al, 2002 URM	Gilliland et al, 2003 CMAQ	Park et al, 2003 GEOS-CHEM
Domain	Eastern U.S.	Eastern U.S.	U.S.
Period	5/24-29, 7/11-19 1995	1990	1998
Data	IMRPOVE, AIRS, PAM	NADP (Wet NH ₄ ⁺)	IMRPOVE
Method	DDC + R.R.	Kalman Filter	Lin. Reg.
Emission	CO, SO ₂ , NO _x , NH ₃ , VOC, ORGF	NH ₃ monthly	OC and EC yearly by source

The crux of inverse aerosol modeling: Thermodynamics

$$IN(p_i)$$

THERMO (MARS-A)

$$\mathrm{OUT}(c_i^{\circ})$$

$$\lambda^{k-1} = \left[\frac{\partial F(c_i^{\circ}(p_i^{k-1}), g_i^{k-1})}{\partial p_i^{k-1}} \right]^T \lambda^k$$

$$= \left[\frac{\partial c_i^{\circ}(p_i^{k-1})}{\partial p_i^{k-1}} \right]^T \left[\frac{\partial F}{\partial c_i^{\circ}(p_i^{k-1})} \right]^T \lambda^k$$

What comes next?

- More robust thermodynamic inverse
- Inverting "equilibrium mode" aerosol dynamics
- Extend from λ to emissions

$$\nabla_E \mathcal{J} = \int_{\tau} \frac{\partial F(p(\tau))}{\partial E} \lambda(\tau) d\tau$$

Inverse Modeling

Given velocity field from meteorological data

- Guess the Emission Flux
- Run model simulation
- wait wait wait....
- Compare model predicted surface concentrations to surface measurements
- Guess the Emission Flux...

$$J = \int \int (|N - N_{obs}|) \delta(\Omega - \Omega_{obs}) d\Omega dt$$

$$\Omega \tau$$

or

• Develop inverse model to find direct relation

$$\Delta J = \iint \left\{ v^* \Delta E \right\}_{z=0} d\omega dt$$

Our inverse modeling approach

Kalman filter

- coarse constraint of regional emission scale factors
- quantify model & estimation error

Adjoint method

- refine constrains of emissions with spatial / temporal resolution
- generate discrete adjoint using AD

Consider perturbation in the solution, Δu

$$L\Delta u = Q\Delta \alpha$$

$$L = \left(\frac{\partial}{\partial t} - \frac{\partial f}{\partial u}\right)_{\alpha} Q = \left(\frac{\partial f}{\partial \alpha}\right)_{u}$$

$$\Delta J = \int_{\tau} \left(\frac{\partial g}{\partial u} \right)_{\alpha} \Delta u dt + \int_{\tau} \left(\frac{\partial g}{\partial k} \right)_{u} \Delta \alpha dt$$

Remember that $L\Delta u$ is a very expensive term to evaluate.

Just in Time Mathematics presents.... The Adjoint Method

How to avoid multiple model runs

• Gov'n equation

$$\frac{\partial u}{\partial t} = f(u, \alpha)$$

Cost function

$$J = \int_{\tau} (|u - u_{obs}|) \delta(t - t_{obs}) dt$$

Introduce the adjoint operator

$$\int_{t_0}^{t_f} \Delta u L^* v^* dt = \int_{t_0}^{t_f} v^* L \Delta u dt - [\Delta u v^*]_{t_o}^{t_f}$$

Force the adjoint equation at the observation point

$$L^*v^* = \left(\frac{\partial g}{\partial u}\right)_{\alpha}$$

Substitute back into the adjoint operator equation

$$\int_{t_0}^{t_f} \Delta u \left(\frac{\partial g}{\partial u} \right)_{\alpha} dt = \int_{t_0}^{t_f} v^* L \Delta u dt - \left[\Delta u v^* \right]_{t_o}^{t_f}$$

Run the model once to obtain base case values

Find the adjoint solution

The adjoint solution is invariant to changes in parameters and boundary conditions.

Now have the cost function in terms of known quantities.

$$\Delta J = \int_{t_0}^{t_f} v^* Q \Delta \alpha dt - [\Delta u v^*]_{t_o}^{t_f}$$

Formulate the adjoint operator

$$\int_{t_0}^{t_f} \Delta u L^* v^* dt = \int_{t_0}^{t_f} v^* L \Delta u dt - [\Delta u v^*]_{t_o}^{t_f}$$

$$\therefore L^* = -\frac{\partial}{\partial t} - \frac{\partial f}{\partial u}$$

Solve the adjoint equation

$$L^*v^* = \delta(t - t_{obs})$$
$$\{v^*\}_{t_f} = 0$$

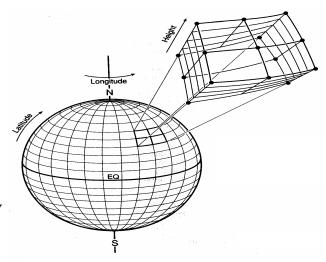
Inverse Modeling

The Adjoint Method

- Variational calculus, optimal control theory (Hilbert, 50's)
- Suggested for use in atmospheric data assimilation (Marchuk, 71)
- Used in Fluid Mechanics (*Pironneau*, 74), Oceanography (*Tziperman and Thacker*, 89)
- Applied to gas phase species in the atmosphere (Fisher and Long, 95)
- Can we use it to recover information about aerosols? (Henze et al, 2004)

· 1°x1ForwardinnodelbaGesowis, 65 Hes M

- Gas aerosol interactions
 - photolysis frequencies
 - heterogeneous chemistry
 - gas/particle fractionation
- Externally mixed aerosols
 - H₂SO₄-HNO₃-NH₃ system driven by
 - organic carbon (OC)
 - elemental carbon (EC)
 - soil dust (four size classes)
 - sea salt (two size classes)
 - mechanistic SOA (in progress)



Inverse Modeling Using Adjoint Method

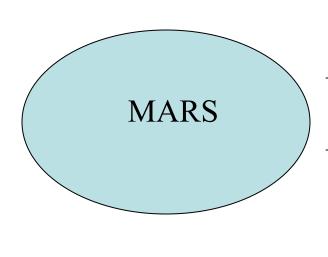
1) Generate guess solution 2) Compute cost function p^0 = initial conditions Forward Model **→** solution observations and parameters $J = \|$ solution - observation $\|^2$ Optimization routine Adjoint Model

4) Optimize the initial conditions and parameters using the gradient $\nabla_{n^0} J$

3) Force adjoint model

Simple Thermodynamic Module

Total concentrations of inorganic component



Gas phase HNO₃, NH₃

Aerosol Phase NO₃-, NH₄+, SO₄²-H₂O, HSO₄-

Consider only two cases

- Sulfate rich
- Sulfate poor

Bromely Method for activity coef

ZSR Method for water

Previous inverse modeling study of PM

• *Park et al*, 2003: Constrain carbonaceous aerosol using 7 emission parameters, **multiple linear regression**

• Gilliland et al, 2003: Constrain single NH3 emission parameter using **Kalman filter**

• *Mendoza-Dominguez & Russell*, 2001: Constrain several emission scale factors using **Kalman filter**.

More detail required to account for regional variation